Спазм мышц спины: причины, симптомы и методы лечения

Нарушение слуха

Слуховое восприятие обеспечивается с помощью воздушной и костной проводимости. Звуковые волны, распространяясь по воздуху (воздушная проводимость), достигают уха, проникают в наружный слуховой проход и вызывают колебания барабанной перепонки, которая приводит в движение молоточек, наковальню и стремя. Движения основания стремени вызывают изменения давления жидкости во внутреннем ухе, приводя к распространению волны на базальную мембрану улитки. Слуховые волоски волосковых клеток спирального органа, располагающегося на базальной мембране, внедрены в покровную мембрану и колеблются под влиянием передвигающейся волны. При каждом колебании волны базальная мембрана смещается, максимум этого смещения определяется частотой раздражающего тона. Высокочастотные тона вызывают максимальное смещение базальной мембраны у основания улитки. При уменьшении частоты колебаний точка максимального смещения сдвигается к верхушке улитки. О костной проводимости слуховые ощущения говорят в тех случаях, когда источник звуков, контактируя с костями черепа, вызывает их вибрацию, в том числе и в височной кости, что вызывает колебания волн в области базальной мембраны.

Колебания слуховых волосков волосковых сенсорных клеток вызывают некоторые биоэлектрические явления. Улитковые микрофонные, переменные электрические колебания, точно передающие частоту и интенсивность раздражающего тона, возникают примерно на 0,5 мс раньше потенциала действия VIII черепного нерва. Наличие данного латентного периода свидетельствует о том, что в месте соприкосновения волосковых клеток и дендритов улиткового нерва выделяется какой-то, пока не идентифицированный, нейротрансмиттер. Все нейроны улиткового нерва активируются при наличии раздражении определенной частоты и интенсивности. Этот феномен характерной или наилучшей частоты отмечают во всех отделах слухового пути: в верхних оливах, латеральной петле, нижних бугорках крыши среднего мозга, медиальном коленчатом теле и слуховой коре. При звуках низкой частоты отдельные слуховые волокна реагируют более или менее синхронно. При высоких частотах замыкание фазы происходит таким образом, что нейроны изменяются в ответ на отдельные фазы цикла звуковой волны. Интенсивность определяется уровнем активности отдельных нейронов, количеством активных нейронов и особенностью активируемых нейронов.

Нарушения слуха

Потерю слуха могут вызывать поражения наружного слухового прохода, среднего уха, внутреннего уха и проводящих путей слухового анализатора. В случае поражения наружного слухового прохода и среднего уха возникает кондуктивная тугоухость, при поражениях внутреннего уха или улиткового нерва - нейросенсорная тугоухость.

Кондуктивная тугоухость возникает в результате закупорки наружного слухового прохода ушной серой, инородными телами, при набухании выстилки прохода, стенозах и новообразованиях наружного слухового прохода. К развитию кондуктивной тугоухости приводят также перфорации барабанной перепонки, например при среднем отите, нарушения целостности слуховых косточек, например при некрозе длинной ножки наковальни вследствие травмы или инфекционных процессов, фиксация слуховых косточек при отосклерозе, а также скопление жидкости в среднем ухе, рубцы и опухоли среднего уха. Нейросенсорная тугоухость развивается в результате повреждений волосковых клеток кортиева органа, обусловленных шумовой травмой, вирусной инфекцией, применением ототоксических препаратов, переломами височной кости, менингитом, отосклерозом улитки, болезнью Меньера и возрастными изменениями. К развитию нейросенсорной тугоухости приводят также опухоли мостомозжечкового угла (например, акустическая невринома), опухолевые, сосудистые, демиелинизирующие и дегенеративные поражения центральных отделов слухового анализатора.

Методы исследования слуха

При осмотре обращают внимание на состояние наружного слухового прохода и барабанной перепонки. Тщательно осматривают полость носа, носоглотку, верхние дыхательные пути и оценивают функции черепных нервов. Кондуктивную и нейросенсорную тугоухость следует дифференцировать путем сравнения порогов слуха при воздушной и костной проводимости. Воздушную проводимость исследуют при передаче раздражении по воздуху. Адекватная воздушная проводимость обеспечивается проходимостью наружного слухового прохода, целостностью среднего и внутреннего уха, вестибулокохлеарного нерва и центральных отделов слухового анализатора. Для исследования костной проводимости к голове больного прикладывают осциллятор или камертон. В случае костной проводимости звуковые волны обходят наружный слуховой проход и среднее ухо. Таким образом, костная проводимость отражает целостность внутреннего уха, улиткового нерва и центральных проводящих путей слухового анализатора. Если имеется повышение порогов воздушной проводимости при нормальных пороговых значениях костной проводимости, то поражение, вызвавшее тугоухость, локализуется в наружном слуховом проходе или среднем ухе. Если имеется повышение порогов чувствительности воздушной и костной проводимости, то очаг поражения находится во внутреннем ухе, улитковом нерве или центральных отделах слухового анализатора. Иногда кондуктивная и нейросенсорная тугоухость наблюдаются одновременно, в этом случае будут повышены пороги как воздушной, так и костной проводимости, но пороги воздушной проводимости будут значительно выше, чем костной.

При дифференциальной диагностике кондуктивной и нейросенсорной тугоухости используют пробы Вебера и Ринне. Проба Вебера заключается в том, что ножку камертона устанавливают на голове больного по средней линии и спрашивают его, слышит ли он звучание камертона равномерно с обеих сторон, или же на одной из сторон звук воспринимается сильнее. При односторонней кондуктивной тугоухости звук сильнее воспринимается на стороне поражения. При односторонней нейросенсорной тугоухости звук сильнее воспринимается на здоровой стороне. Пробой Ринне сравнивают восприятие звука посредством воздушной и костной проводимости. Бранши камертона подносят к слуховому проходу, а затем ножку звучащего камертона устанавливают на сосцевидном отростке. Больного просят определить, в каком случае звук передается сильнее, посредством костной или воздушной проводимости. В норме звучание ощущается громче при воздушной проводимости, чем при костной. При кондуктивной тугоухости лучше воспринимается звучание камертона, установленного на сосцевидном отростке; при нейросенсорной тугоухости нарушены оба вида проводимости, однако в ходе исследования воздушной проводимости звук воспринимается громче, чем в норме. Результаты проб Вебера и Ринне вместе позволяют сделать вывод о наличии кондуктивной или нейросенсорной тугоухости.

Количественную оценку тугоухости проводят с помощью аудиометра - электрического прибора, позволяющего исследовать воздушную и костную проводимость с использованием звуковых сигналов различной частоты и интенсивности. Исследования проводят в специальной комнате со звукоизоляционным покрытием. Для того чтобы ответы больного основывались только на ощущениях со стороны исследуемого уха, другое ухо экранируют с помощью широкоспектральных шумов. Используют частоты от 250 до 8000 Гц. Степень изменения слуховой чувствительности выражают в децибелах. Децибел (дБ) равен десятикратному значению десятичного логарифма отношения силы звука, необходимой для достижения порога у данного больного, к силе звука, необходимой для достижения слухового порога у здорового человека. Аудиограмма - это кривая, отображающая отклонения слуховых порогов от нормальных (в дБ) для разных звуковых частот.

Характер аудиограммы при тугоухости часто имеет диагностическое значение. При кондуктивной тугоухости обычно выявляются довольно равномерное повышение порогов для всех частот. Для кондуктивной тугоухости с массивным объемным воздействием, как это бывает при наличии транссудата в среднем ухе, характерно значительное повышение порогов проводимости для высоких частот. В случае кондуктивной тугоухости, обусловленной тугоподвижностью проводящих образований среднего уха, например, вследствие фиксации основания стремени на ранней стадии отосклероза, отмечают более выраженное повышение порогов проводимости низких частот. При нейросенсорной тугоухости в целом имеется тенденция к более выраженному повышению порогов воздушной проводимости высоких частот. Исключение составляет тугоухость вследствие шумовой травмы, при которой отмечают наибольшее снижение слуха на частоту 4000 Гц, а также болезнь Меньера, особенно на ранней стадии, когда более значительно повышаются пороги проводимости низких частот.

Дополнительные данные позволяет получить речевая аудиометрия. Этим методом с использованием двусложных слов с равномерным ударением на каждом слоге исследуют спондеический порог, т. е. интенсивность звука, при которой речь становится разборчивой. Интенсивность звука, при которой больной может понять и повторигь 50% слов, называют спондеическим порогом, он обычно приближается к среднему порогу речевых частот (500, 1000, 2000 Гц). После определения спондеического порога исследуют дискриминационную способность с помощью односложных слов с громкостью звука на 25-40 дБ выше спондеического порога. Люди с нормальным слухом могут правильно повторить от 90 до 100% слов. Больные с кондуктивной тугоухостью также хорошо выполняют дискриминационную пробу. Больные с нейросенсорной тугоухостью не способны различать слова вследствие повреждения периферического отдела слухового анализатора на уровне внутреннего уха или улиткового нерва. При поражении внутреннего уха дискриминационная способность бывает снижена и составляет обычно 50-80% нормы, тогда как при поражении улиткового нерва способность различать слова значительно ухудшается и составляет от 0 до 50%.






Наиболее просматриваемые статьи: